
NORCOM GUI ScreenIO

File Percentages with ISAM
(or any other file system)

ith Listviews, there is just about no way to avoid using percentages to tell
the listview just how far into the file the current record sits. This is what
Microsoft Listviews use to adjust the size and position of the thumb, the

slider in the scroll bar.
W
The problem is the ISAM files or relative record files do not provide percentages.
Some database packages do, and some don't. Those that do may not have the flexibility
you desire.

This paper describes a general purpose method of obtaining File Percentages with
ISAM files for the COBOL world, without having to read the entire file to count re-
cords.

Basic Concept

The theory is this:

By obtaining the key of the first record in the file (or subset of records-of-interest),
and obtaining the key of the last such record, you can compute a Range of Keys.

The Range of Keys allows you to calculate where, within this range, any given re-
cord resides.

This Range of Keys, and the the position of any given record, can be normalized
over the range of zero to one hundred with a degree of precision sufficient for the
needs of a listview control.

Copyright © Norcom 07/17/09 Page 1

NORCOM GUI ScreenIO

Method of Operation
The basic method has to do with COBOL Data Types, and redefinition of data elements.

If you define a large COMPUTATIONAL data element subordinate to a ALPHANU-
MERIC element you can obtain a numeric representation of alphanumeric data.

Lets suppose we have a file with 8 byte alphanumeric keys. Lets call them account
numbers. They might range from 00000000 through ZZZZZZZ and can contain letters
or numbers in any position.

If the first key on file was 0873RT45, and the last key was Z273AB12, it would be
difficult to determine just what percentage record 5FG78343 would be within this
range.

However if we were able to convert each to a number, we could calculate the range, and
the percentage within that range via simple math.

Obtaining Numbers from Letters.

There might be elaborate methods of assigning each letter a value, and scanning the
keys, converting and adding as you go. This would be slow and inefficient.

Our method relies on data representation in the COBOL world, and the fact that the
same data can be seen using different PICTURE clauses and the conversion costs noth-
ing. Its instantaneous, and requires no computational logic to do the conversion.

Let us assume we have the following WORKING STORAGE data structure defined:

01 CONVERT-KEY-X.
 05 CONVERT-KEY PIC 9(3)V9(15) COMP-4.

The Comp-4 numeric definition of CONVERT-KEY defines 8 bytes. Therefore, the
size of CONVERT-KEY-X is also 8 bytes. (For a discussion on why we chose that par-
ticular picture clause see Keys Size and Distribution on page 9).

If you move 8 alphanumeric bytes into CONVERT-KEY-X, the numeric value of CON-
VERT-KEY is instantly changed. This change is dictated by the encoding sequence
used by the computer1.

1 We assume ASCII in this document. Of course this is also the normal Collating Sequence for ISAM

Copyright © Norcom 07/17/09 Page 2

NORCOM GUI ScreenIO

Thus, the value in in CONVERT-KEY is a numeric value that represents the key. A
key near the beginning of the file will have a lower value, a key near the end of the file
will have a higher value, based strictly on the collating sequence.

We have created a calculation program2 that can be used to experiment with these calcu-
lations, and we use it here to show the example values mentioned above.

In the lower two rows, you see the Lowest Key (0873RT45) and the Highest Key
(Z273AB12), and the numerical equivalent of each.

In the upper row, you see a key from the file (5FG78343), and its numerical equivalent,
and the Percentage location within the file where this key would appear. 12.04%.

An astute reader might notice that the Numeric values have larger integer values than
would fit in the Picture Clause of PIC 9(3)V9(15) mentioned above. This is explained
on page 5 under “Calculation Caveats.“.

Putting it in Practice

The method of utilization of this Alpha to Numeric conversion, therefore, is to first find

files. Unless of course you have an ISAM package that allows you to change the collating sequence.
If this is the case you should stop reading now. This method will probably not work for you.

2 You can download this program in source or executable format. See Download Samples on page 20.

Copyright © Norcom 07/17/09 Page 3

NORCOM GUI ScreenIO

the Range of all possible keys on file3 so that we can compute a percentage position for
any key.

First, you must fetch the first record in the file (or from the subset of records of interest)
and move its key to CONVERT-KEY-X. You then have a numeric value in CON-
VERT-KEY that represents the lowest possible key in the file.

Save this numeric value as the Lowest-key value in the file.

Then obtain numerical equivalent of the last record key in the file.

NOTE: In COBOL, you move HIGH-VALUES into the record buffer, and START
file-name KEY NOT LESS THAN record-key. Of course this will fail, because
there is (in all probability) no record on file with a key of high-values. Your FILE-
STATUS value will be the End-of-File value. No matter! The record pointer is now
set to the end of file. If you then simply READ PRIOR RECORD you will have the
last record in the file4.

Then move the key of this last record into CONVERT-KEY-X, and you will find the
numeric value of the last key in CONVERT-KEY.

Save this value as the Highest key.

Subtract the numerical value of the Lowest key from the numerical value of the Highest
key, and you have the numerical representation of the Range of keys in the file5. (At
this point you really don't need the Highest key any further. It was the Range we were
after.) Save this value in Key-Range.

Now, for any given key in the file, you can compute it's percentage.

Move the key of the record in question to CONVERT-KEY-X, and move the value in
CONFERT-KEY to a Record key data element.

Next you need to compute what percent of Key-Range that this Record key represents.

3 We use the entire range of keys in the file in this example. However, this method works equally well
if we wanted to select a subset of records from the file, such as all the “Smiths” in or database. In this
case we would fetch the first Smith, and the last Smith, and use these records for our calculations.

4 If File Status was not end-of-file you simply READ file-name NEXT RECORD. This would only
happen if you actually had a High-Value key in the file.

5 To be perfectly pedantic, you would expect to add ONE to the range derived in this way. However
the size of the numbers we are dealing with make this unnecessary, and undesirable.

Copyright © Norcom 07/17/09 Page 4

NORCOM GUI ScreenIO

But first you have to subtract our Lowest key from Record key. This is necessary to nor-
malize the Record-key to the Range.

Then you divide the Record key by the Key-Range, which yields a value ranging from
zero to 1. Multiply that quotient by 100 and you have the percentage position within
the file.

If you are in the practice of putting all File IO in a callable subroutine6, you can embed
this percentage calculation into the subroutine and never have to worry about it again.

• When you OPEN the file, DELETE a record, or ADD a record, you fetch the
First record, Last record, and compute Range. You save that Range in the
working storage of the File IO subroutine.

• Each READ against the file (or READ NEXT, READ PRIOR, etc) calculates
the percentage, and returns it to the calling program.

If you are doing this in a callable file-IO subroutine this logic is completely hidden from
your main programs. The Percentage is passed back in one of the arguments.

Calculation Caveats.

There are a few things to be aware of when using CONVERT-KEY-X to convert text to
numbers.

1. You must use COMP-4, because BINARY is compiler dependent, and COMP-5
has low order and high order bytes inverted.

2. You do not need and do not want Signed Picture Clauses.

3. You have to be cognizant of size equivalences of COMP fields. You can use
two bytes, four bytes or 8 byte for the text keys, as these equate to standard in-
crements of COMP fields. Some Compilers support quad precision 16 byte
COMP numbers.

4. You must move your data out of the COMP-4 field to a larger field, because
COMP-4 fields can hold values larger than their picture clause as implemented
in most compilers. Example: 9(4) COMP-4 can actually hold a number as large
as 32k, (32768). Some alphabetic sequence in CONVERT-KEY-X will likely
equate to a number larger than 9999. Therefore, you need one extra digit ahead

6 If not, why not? It makes maintenance SO much easier.

Copyright © Norcom 07/17/09 Page 5

NORCOM GUI ScreenIO

of the decimal point for your target field.

5. You need to be cognizant of COBOL's handling of intermediate results so as not
to lose precision in the decimal portion. Luckily, the degree of precision needed
for Listviews is not so great that this can't be handled with 6 to 8 places behind
the decimal.

Finally, there are some compilers which do not handle all values, especially very small
decimal values in COMP fields. Some compilers also impose high-order truncation
when moving a large number like 32k from a PIC 9(4) source even if the target is PIC
9(5). (There are usually tricks to get around this.) These lead to weird problems that
are costly to debug. Therefore its best to move the COMP-4 values to regular Display
Values prior to any other computation. Display handling seems more reliable.

Calculation Data Elements

For the discussion at hand, we would use the following data elements:

Our Conversion Field:
01 CONVERT-KEY-X.
 05 CONVERT-KEY PIC 9(3)V9(15) COMP-4.

Our Storage Fields and calculation fields. (All are Display Numeric).
01 HIGHEST-KEY PIC 9(4)V9(14).
01 LOWEST-KEY PIC 9(4)V9(14).
01 KEY-RANGE PIC 9(4)V9(14).
01 FILE-PERCENT PIC 9(3)V9(12).

And its also convenient to have a Working computational field:
01 WORK-CALC PIC 9(4)V9(14).

Once a value is run through CONVERT-KEY and rendered to a number it is immedi-
ately placed in one of the Display Numeric fields. Then, and only then, are any math
operations performed.

You may use simple COBOL arithmetic verbs, ADD, SUBTRACT, DIVIDE, MUL-
TIPLY, or you may use COMPUTE statements. Compute statements are often slower,
and more prone to loss of precision in intermediate results. For portability reasons, we
therefore prefer to avoid COMPUTE verbs. Picture Clauses are the key to proper preci-
sion, but check your COBOL manual regarding intermediate results.

Copyright © Norcom 07/17/09 Page 6

NORCOM GUI ScreenIO

Calculation Code

As mentioned above, EVERY time you OPEN the file, DELETE a record, or ADD a re-
cord you have to recalculate the Highest and Lowest keys. This costs two extra read
operations against the file. If done in a FILE-IO subroutine you will never be aware of
them. If your system does massive numbers of consecutive of Key-High record ADD
operations, you might want to delay this recalculation until you are finished adding.
Further, you could forgo recalculating the range all together if you knew you were do-
ing mid-file insertions or deletions. The speed with which you can do math is far great-
er than the speed you can do file IO, so you might want to pass each key for ADD or
DELETE operations through CONVERT-KEY-X and determine if CONVERT-KEY
was higher than HIGHEST-KEY or lower than LOWEST-KEY and only then re-fetch
HIGHEST-KEY and LOWEST-KEY after the file operation completes. For most
transactional data files where small numbers of records are added this may prove unne-
cessary.

Code for OPEN, ADD, DELETE:

Typical code for OPEN, ADD or DELETE operations appears below. The point here is
to re-fetch the Lowest, Highest, and Range and keep these in memory for subsequent
read operations. We prefer to put this in a stand alone paragraph and perform that para-
graph upon any of the above operations.

GET-HIGHEST-LOWEST-PARAGRAPH.
 MOVE ZERO TO KEY-RANGE.
 MOVE LOW-VALUES TO my-FILE-RECORD.
 START my-FILE KEY IS GREATER THAN my-FILE-KEY

 READ my-FILE NEXT RECORD
 IF my-FILE-STATUS = '00'
 MOVE my-FILE-KEY TO CONVERT-KEY-X
 MOVE CONVERT-KEY TO LOWEST-KEY

 MOVE HIGH-VALUES TO my-FILE-RECORD
 START my-FILE KEY IS GREATER THAN my-FILE-KEY

 READ my-FILE PRIOR RECORD
 IF my-FILE-STATUS = '00'
 MOVE my-FILE-KEY TO CONVERT-KEY-X
 MOVE CONVERT-KEY TO HIGHEST-KEY
 SUBTRACT LOWEST-KEY FROM HIGHEST-KEY
 GIVING KEY-RANGE.

The above will yield a value in KEY-RANGE which will be positive if all file opera-

Copyright © Norcom 07/17/09 Page 7

NORCOM GUI ScreenIO

tions succeeded, and zero otherwise.

Code for READ (any variety):

Upon any read operation, we perform a paragraph which calculates the percentage. We
do the calculations in simple arithmetic because it often is faster, and its always easier
to debug.

CALC-PERCENT-PARAGRAPH.
 MOVE ZERO TO FILE-PERCENT.
 IF KEY-RANGE > ZERO
 MOVE my-FILE-KEY TO CONVERT-KEY-X
 MOVE CONVERT-KEY TO WORK-CALC
 SUBTRACT LOWEST-KEY FROM WORK-CALC
 DIVIDE WORK-CALC BY KEY-RANGE GIVING WORK-CALK
 MULTIPLY 100.00000000 BY WORK-CALC GIVING FILE-PERCENT.

Code for START-AT-PERCENT: (Yes, a new extension for COBOL).

Listviews frequently ask you to start loading records from some percentage point in the
file, usually because the user has dragged the listview thumb down the scroll-bar some
arbitrary amount. The listview will ask you to start returning records beginning with, as
an example, %75.3764 into the file. (Absolute precision is not important to the listview
in most instances.)

We treat START-AT-PERCENT as if it were a valid COBOL start condition. That is,
we position the read pointer such that the next read will produce the record at the de-
sired percentage point in the key space. This is in keeping with other COBOL start
statements. We do not actually return the record until the user does the READ NEXT
or READ PRIOR.

We calculate the key that would be closest to the actual percentage point in the file. We
don't expect this to be a valid key. We don't care. We will tell COBOL to START
NOT LESS THAN this calculated key, which will leave the record pointer ready to read
the next record.

Again, it is shown here as a performable paragraph:
START-AT-PERCENT-PARAGRAPH.

 COMPUTE WORK-CALC =
 ((FILE-PERCENT / 100.000000) * KEY-RANGE) + LOWEST-KEY

 MOVE WORK-CALC TO CONVERT-KEY
 MOVE CONVERT-KEY-X TO my-FILE-KEY

Copyright © Norcom 07/17/09 Page 8

NORCOM GUI ScreenIO

 START my-FILE KEY IS NOT LESS THAN my-FILE-KEY
 MOVE my-FILE-STATUS TO FILE-STATUS-RETURN.

Note that FILE-PERCENT is expected to be loaded prior to this paragraph being in-
voked. We used the COMPUTE verb here because this is a seldom performed operation
and efficiency is not too important.

Keys Size and Distribution

As described herein, this method is sufficient to handle keys up to 8 characters.

Most compilers have a quad precision COMP-4: PIC 9(18)V9(18) which can handle up
to 16 byte Alphanumeric keys. By changing the picture clause of CONVERT-KEY you
would be able to convert the code here in to accommodate these larger keys. You would
have to adjust all other work fields accordingly.

However, problems can result when converting to Numeric Display due to the limita-
tion of 18 digits for numeric display items imposed by COBOL. Low order truncation
may result, but the precision should be close enough for Listview usage.

While the position of the decimal point is somewhat arbitrary in these examples. You
need to coordinate the decimal positions in the CONVERT-KEY with your working
fields such that the working fields have an integer portion larger by one position.

Making the integer portion too large results in shedding precision when the result is
moved to the calculated percent field due to its three digit integer position. Three digits
of integer is all that is needed in a percentage value used to indicate position within a
file. The math involved will necessarily shed precision by dropping two positions of the
decimal portion of the number during the calculation process as the quotient is multi-
plied by 100 to deliver a percent value. Losing two our of 14 positions of precision is
better than losing 2 out of 8 or 2 out of 6 positions.

However, key-spaces with keys that tend to vary only in the rightmost least significant
positions require as much precision as can be mustered.

An example of such least-significant variation is phone numbers, where there are
many with the same area code and exchange portion, and variability only in the last
four positions.

If our Alpha-to-Numeric calculator is modified to calculate based on CONVERT-KEY
being defined with PIC 9(9)V9(9), we only obtain 8 decimal digits after the move to

Copyright © Norcom 07/17/09 Page 9

NORCOM GUI ScreenIO

working fields. This results in a calculated percentage value that has shed precision
from the low end. We have, at best, with 6 decimal digits of precision.

Therefore, the optimum decimal position in our CONVERT-KEY is indicated by pic-
ture clause of 9(3)V9(15). Due to fact that COMP-4 can hold one more digit than the
picture clause shows, we need a picture clause of 9(4)V9(14) in our working fields.

Also, if you know your keys are all numeric, you can dispense with the conversion from
alphanumeric text fields and simply use the keys you have. It is important to be aware
of decimal places, and you may want to use a redefinition of your numeric key to make
sure you have adequate decimal places in your working fields so that calculations do not
shed precision.

Files with really long keys are probably not suitable for this method. Nor are files with
long keys which only vary in the right most position, as such keys tend to yield all the
same percentage values.

There is no guarantee that the keys in any file are Uniformly Distributed over the key-
space. Therefore, using this technique, there is no guarantee that dragging the thumb of
a listview to the 50% range will start in the second half of the file. But this percentage
calculation method is close enough that it can be used to satisfy the percentage based
positioning of Listviews with reasonable accuracy, and more importantly, repeatability
and consistently across all file operations on the given file.

Because this method is based on Key Values, it is usable for almost any file type. It is
not limited to ISAM.

Copyright © Norcom 07/17/09 Page 10

NORCOM GUI ScreenIO

The File-IO Subroutine.
We long ago realized that it is far better to put all file IO into a single subroutine, or one
such subroutine per file. That way we do not have Select statements, File sections, and
all the responsibility of proper open/close and status checking scattered in dozens of
programs comprising the system. Further, if we change a record layout, add an Altern-
ate Index, convert from ISAM to Btrieve or SQL, none of the main line programs need
to be changed.

All of the Percentage Calculation functions described in this paper can and should
be embedded in your File-IO subroutine. That way they are “fire and forget”. You
will have a percentage value available on any read, at little or no computational cost.

A typical File-IO subroutine will be called with two arguments.

One, of course is the file record itself. The other is what we call the File-Request argu-
ment structure.

This File-Request argument provides your calling programs with all of the information
and capabilities they would have if the file was embedded in that program. It carries in-
structions to the File-IO subroutine, and carries results back to your program.

This File-Request structure needs an area to pass IN the desired Operation. Read, write,
open, close, rewrite, delete, etc.

It also needs an area to pass OUT the File Status code resulting from the operation.

It is best to render File Status Codes to a standardized set so that you are not tied to one
particular file type. Further, it is best to encode these in COBOL 88 names so you don't
have to change your programs if you switch compilers, or switch file systems. You
simply map the new compiler's status to the standardized set of 88 values.

You will need codes for OK, Not Found, EOF, Locked Record, Duplicate Record, and
perhaps a few more.

Finally, for the subject at hand, you would want a Percentage field.

Other optional features in the File Request argument might include provision for a Al-
ternate Index number if your file supports operations based on different keys, Cursor
Numbers if your file system supports multiple Cursors, Relative Record number if your
file has no internal keying structures, and a “file specification” field so that the file-IO

Copyright © Norcom 07/17/09 Page 11

NORCOM GUI ScreenIO

routine is not hard coded to using a specific file location, and you have the flexibility of
telling it where the files are located for OPEN operations.

Linking File-IO Subroutines

File-IO subroutines can be linked statically or dynamically. For a discussion of the dif-
ferences see: http://screenio.com/gui_screenio/gs_htmlhelp_subweb/techtips/calls.htm

The short version of the above document is that Static calls embed the File-IO routine
into your EXE, and the Dynamic calls require that you compile and link it as a stand-
alone DLL.

There are also difference in the Call statement:

Static call:
CALL “FILEIO” USING FILE-REQUEST FILE-RECORD.

Dynamic call:
01 MY-DATA-FILE-HANDLER PIC X(8) VALUE “FILEIO”.
.
.
CALL MY-DATA-FILE-HANDLER USING FILE-REQUEST FILE-RECORD.

We STRONGLY recommend dynamic calls when your application consists of more
than one EXE, or one EXE and several DLLs. If you don't use Dynamic calls when
file-io must be performed in the various DLLs of your application you risk file corrup-
tion, and record locking problems.

If your application is one single EXE, and will never grow beyond that then static link-
ing works fine.

Converting is laborious, so if there is any chance your application will grow beyond a
single EXE, take the time to make all file-io subroutine calls dynamic. Its easier than
going through every program later to change them, and dynamic calling is actually de-
sirable in most cases, as you can fix the file-io subroutine without recompiling the entire
application again.

 An Example File-IO Subroutine.

We provide the following example of a file-IO subroutine. This routine was designed

Copyright © Norcom 07/17/09 Page 12

http://screenio.com/gui_screenio/gs_htmlhelp_subweb/techtips/calls.htm

NORCOM GUI ScreenIO

to work with GUI ScreenIO programs where Listview controls were employed to dis-
play file data. It is designed for large files, with many thousands of records where it
would not be practical to “count records” or use other contrivances to arrive at a per-
centage figure to satisfy the listview's need for a percents.

The File-Request copybook.

The file-request copybook is, as mentioned above designed to specify the FILE-RE-
QUEST argument structure. Its fairly simple in this example.

 * :---------------------------------------
 *-----------------: This is a simple file request copybook
 * : used with a file-io subroutine.
 * : It provides all basic io functionality
 * : commonly found with ISAM files.
 * :---------------------------------------
 01 FILE-REQUEST.

 05 FILE-OPERATION PIC 99.
 88 FILE-OPEN-INPUT VALUE 01.
 88 FILE-OPEN-OUTPUT VALUE 02.
 88 FILE-OPEN-IO VALUE 03.

 *
 88 FILE-CLOSE VALUE 04.
 88 FILE-UNLOCK VALUE 05.

 *
 88 FILE-READ VALUE 06.
 88 FILE-READ-NEXT VALUE 07.
 88 FILE-READ-PRIOR VALUE 08.
 88 FILE-READ-LOCK VALUE 09.

 *
 88 FILE-WRITE VALUE 10.
 88 FILE-REWRITE VALUE 11.
 88 FILE-DELETE VALUE 12.

 *
 88 FILE-START-EQUAL VALUE 14.
 88 FILE-START-NOT-LESS VALUE 15.
 88 FILE-START-GREATER VALUE 16.
 88 FILE-START-AT-PERCENT VALUE 17.

 *
 * : Adjust these file status values to
 * : your compiler. Always use 88 names.

 05 FILE-STATUS-RETURN PIC XX.
 88 FILE-STATUS-OK VALUE '00'.
 88 FILE-STATUS-LOCKED-RECORD VALUE '9L'.
 88 FILE-STATUS-EOF VALUE '10'.

Copyright © Norcom 07/17/09 Page 13

NORCOM GUI ScreenIO

 *
 * : This is only needed on OPEN
 * : statements.
 * : This specifies the PATH only, the
 * : individual file names are dictated
 * : by the io module.

 05 FILE-PATH-SPEC PIC X(161).
 *
 * : Used as input to a start-at-percent
 * : request and output for any read.

 05 FILE-PERCENT PIC 9(3)V9(12).
 * :

FILE-IO COBOL Example.

000010*$CALL
000020*@S SUBROUTINE
000030 IDENTIFICATION DIVISION.
000040* : I-O subroutine for ISAM
000050* : This is an instructional example.
000060* : You are free to use as you see fit
000070* : at your own risk. If something goes
000080* : wrong its not our fault, even if you
000090* : say it is, because we accept no
000100* : responsibility for loss or damages.
000110* : It must be something YOU did.
000120 PROGRAM-ID. FILEIO.
000130 DATE-COMPILED.
000140*%%%
000150 ENVIRONMENT DIVISION.
000160*%%%
000170 CONFIGURATION SECTION.
000180 SOURCE-COMPUTER. IBM-PC.
000190 OBJECT-COMPUTER. IBM-PC.
000200*%%%
000210 INPUT-OUTPUT SECTION.
000220* : This section may need reconfiguring
000230* : for some compilers.
000240 FILE-CONTROL.
000250*
000260 SELECT DATA-FILE ASSIGN TO VARYING DATA-FILE-SPEC
000270 ORGANIZATION IS INDEXED
000280 ACCESS MODE IS DYNAMIC
000290 RECORD KEY IS FD-KEY
000300 LOCK MODE IS MANUAL
000310 FILE STATUS IS FILE-STAT.

Copyright © Norcom 07/17/09 Page 14

NORCOM GUI ScreenIO

000320*
000330*%%%
000340 DATA DIVISION.
000350*%%%
000360 FILE SECTION.
000370* : This section may need reconfiguring
000380* : for some compilers.
000390 FD DATA-FILE
000400 LABEL RECORDS STANDARD.
000410* -====-
000420* : This subroutine does not care about
000430* : the structure of the file or data
000440* : names in it. All it needs to know
000450* : is the record length over all, and
000460* : key size and position.
000470* : So keep this FD record simple.
000480*
000490* : RECORD AND KEY SIZES EXAMPLES ONLY
000500* : --Adjust to your needs --
000510 01 FD-REC.
000520 05 FD-KEY PIC X(20).
000530 05 FD-FILLER PIC X(1480).
000540*%%%
000550 WORKING-STORAGE SECTION.
000560 01 V--VERSION-LEVEL PIC 9(3) VALUE 1.
000570*
000580* : THIS IS THE ACTUAL FILE NAME AND
000590* : EXTENSION. Adjust as needed..
000600* : DO NOT USE EMBEDDED SPACES IN THIS
000610* : NAME.
000620 01 MY-DATA-FILE-NAME PIC X(20) VALUE
000630 'DATAFILE.DAT'.
000640*
000650 01 DATA-FILE-SPEC PIC X(161).
000660 01 FILE-STAT PIC XX.
000670*
000680 01 1HUNDRED PIC 9(4)V9(14) VALUE 100.0.
000690*
000700* :-------------------------------------
000710* ------------------------: Note regarding these calc fields.
000720* : There is high-order truncation
000730* : possible when moving a comp field
000740* : to a display field of equal size
000750* : because the comp field can hold more
000760* : than its picture size shows.
000770* : Example: 9(4) COMP-4 can hold 32k.
000780* :
000790* : Therefore we only use the comp flds
000800* : for the conversion from alpha to

Copyright © Norcom 07/17/09 Page 15

NORCOM GUI ScreenIO

000810* : numeric, and then move that to a
000820* : display field which is one order of
000830* : magnitude larger: 9(4) vs 9(3) etc.
000840* : This prevents high order overflow.
000850* :
000860* : You might be tempted to think you
000870* : could use comp all the way thru. But
000880* : A compiler bug (or something) also
000890* : crops up with very small numbers in
000900* : some compilers.
000910* : You can not put 0.000002259 into a
000920* : PIC 9(3)V9(15) COMP-4 field because
000930* : the some compilers lose the decimal
000940* : location.
000950* :-------------------------------------
000960 01 LOWEST-KEY PIC 9(4)V9(14).
000970 01 HIGHEST-KEY PIC 9(4)V9(14).
000980 01 KEY-RANGE PIC 9(4)V9(14).
000990 01 WRK-TARGET-KEY PIC 9(4)V9(14).
001000*
001010 01 CONVERT-KEY-X.
001020 05 CONVERT-KEY PIC 9(3)V9(15) COMP-4.
001030*
001040 01 STATUS-BYTE PIC X VALUE 'C'.
001050 88 IS-OPEN VALUE 'O'.
001060 88 NOT-OPEN VALUE 'C'.
001070*
001080* :
001090 01 WS-IDX PIC S9(4) COMP-5.
001100*%%%
001110 LINKAGE SECTION.
001120* -====-
001130 COPY FILEREQU.
001140*
001150* : RECORD AND KEY SIZES ARE EXAMPLES
001160* : --Adjust to your needs --
001170 01 LINKAGE-DATA-RECORD.
001180 05 LINKAGE-KEY PIC X(20).
001190 05 LINKAGE-FILLER PIC X(1480).
001200*
001210*%%%
001220 PROCEDURE DIVISION USING FILE-REQUEST LINKAGE-DATA-RECORD.
001230*
001240* -====-
001250 0001-MAIN-LINE-LOGIC.
001260*
001270 EVALUATE TRUE
001280 WHEN FILE-OPEN-INPUT
001290 IF IS-OPEN

Copyright © Norcom 07/17/09 Page 16

NORCOM GUI ScreenIO

001300 CLOSE DATA-FILE
001310 SET NOT-OPEN TO TRUE
001320 END-IF
001330 PERFORM 0002-BUILD-FILE-SPEC
001340 OPEN INPUT DATA-FILE
001350 MOVE FILE-STAT TO FILE-STATUS-RETURN
001360 IF FILE-STATUS-OK
001370 SET IS-OPEN TO TRUE
001380 PERFORM 0003-GET-HIGHEST-LOWEST
001390 END-IF
001400*
001410 WHEN FILE-OPEN-OUTPUT
001420 IF IS-OPEN
001430 CLOSE DATA-FILE
001440 SET NOT-OPEN TO TRUE
001450 END-IF
001460 PERFORM 0002-BUILD-FILE-SPEC
001470 OPEN OUTPUT DATA-FILE
001480 MOVE FILE-STAT TO FILE-STATUS-RETURN
001490 IF FILE-STATUS-OK
001500 SET IS-OPEN TO TRUE
001510 END-IF
001520*
001530 WHEN FILE-OPEN-IO
001540 IF IS-OPEN
001550 CLOSE DATA-FILE
001560 SET NOT-OPEN TO TRUE
001570 END-IF
001580 PERFORM 0002-BUILD-FILE-SPEC
001590 OPEN I-O DATA-FILE
001600 MOVE FILE-STAT TO FILE-STATUS-RETURN
001610 IF FILE-STATUS-OK
001620 SET IS-OPEN TO TRUE
001630 PERFORM 0003-GET-HIGHEST-LOWEST
001640 END-IF
001650*
001660 WHEN FILE-CLOSE
001670 IF IS-OPEN
001680 CLOSE DATA-FILE
001690 SET NOT-OPEN TO TRUE
001700 END-IF
001710*
001720 WHEN FILE-READ
001730 MOVE LINKAGE-KEY TO FD-KEY
001740 READ DATA-FILE KEY IS FD-KEY
001750 MOVE FD-REC TO LINKAGE-DATA-RECORD
001760 MOVE FILE-STAT TO FILE-STATUS-RETURN
001770 PERFORM 0004-CALCULATE-PERCENT
001780*

Copyright © Norcom 07/17/09 Page 17

NORCOM GUI ScreenIO

001790 WHEN FILE-READ-LOCK
001800 MOVE LINKAGE-KEY TO FD-KEY
001810 READ DATA-FILE WITH LOCK
001820 KEY IS FD-KEY
001830 MOVE FD-REC TO LINKAGE-DATA-RECORD
001840 MOVE FILE-STAT TO FILE-STATUS-RETURN
001850 PERFORM 0004-CALCULATE-PERCENT
001860*
001870 WHEN FILE-UNLOCK
001880 MOVE LINKAGE-KEY TO FD-KEY
001890 UNLOCK DATA-FILE
001900*
001910 WHEN FILE-READ-NEXT
001920 READ DATA-FILE
001930 NEXT RECORD
001940 MOVE FD-REC TO LINKAGE-DATA-RECORD
001950 MOVE FILE-STAT TO FILE-STATUS-RETURN
001960 PERFORM 0004-CALCULATE-PERCENT
001970*
001980 WHEN FILE-READ-PRIOR
001990 READ DATA-FILE PRIOR RECORD
002000 MOVE FD-REC TO LINKAGE-DATA-RECORD
002010 MOVE FILE-STAT TO FILE-STATUS-RETURN
002020 PERFORM 0004-CALCULATE-PERCENT
002030*
002040 WHEN FILE-WRITE
002050 MOVE LINKAGE-DATA-RECORD TO FD-REC
002060 WRITE FD-REC
002070 MOVE FILE-STAT TO FILE-STATUS-RETURN
002080 PERFORM 0003-GET-HIGHEST-LOWEST
002090*
002100 WHEN FILE-REWRITE
002110 MOVE LINKAGE-DATA-RECORD TO FD-REC
002120 REWRITE FD-REC
002130 MOVE FILE-STAT TO FILE-STATUS-RETURN
002140*
002150 WHEN FILE-DELETE
002160 MOVE LINKAGE-DATA-RECORD TO FD-REC
002170 DELETE DATA-FILE RECORD
002180 MOVE FILE-STAT TO FILE-STATUS-RETURN
002190 PERFORM 0003-GET-HIGHEST-LOWEST
002200*
002210 WHEN FILE-START-EQUAL
002220 MOVE LINKAGE-DATA-RECORD TO FD-REC
002230 START DATA-FILE KEY IS EQUAL TO FD-KEY
002240 MOVE FILE-STAT TO FILE-STATUS-RETURN
002250*
002260 WHEN FILE-START-NOT-LESS
002270 MOVE LINKAGE-DATA-RECORD TO FD-REC

Copyright © Norcom 07/17/09 Page 18

NORCOM GUI ScreenIO

002280 START DATA-FILE KEY IS NOT LESS THAN FD-KEY
002290 MOVE FILE-STAT TO FILE-STATUS-RETURN
002300*
002310 WHEN FILE-START-GREATER
002320 MOVE LINKAGE-DATA-RECORD TO FD-REC
002330 START DATA-FILE KEY IS GREATER THAN FD-KEY
002340 MOVE FILE-STAT TO FILE-STATUS-RETURN
002350*
002360 WHEN FILE-START-AT-PERCENT
002370* : Calculate the NEEDED key...
002380* : its x percent of the range plus
002390* : the lowest key.
002400 COMPUTE CONVERT-KEY =
002410 ((FILE-PERCENT / 1HUNDRED) * KEY-RANGE) + LOWEST-KEY
002420*
002430 MOVE CONVERT-KEY-X TO FD-KEY
002440 START DATA-FILE KEY IS NOT LESS THAN FD-KEY
002450 MOVE FILE-STAT TO FILE-STATUS-RETURN
002460*
002470 END-EVALUATE
002480 GOBACK.
002490*
002500 0002-BUILD-FILE-SPEC.
002510* : This method of supplying a variable
002520* : file spec is CA-Realia Specific.
002530* : You may need to change this code.
002540 MOVE FILE-PATH-SPEC TO DATA-FILE-SPEC
002550 PERFORM
002560 VARYING WS-IDX FROM LENGTH OF DATA-FILE-SPEC BY -1
002570 UNTIL WS-IDX NOT > 0
002580 OR DATA-FILE-SPEC (WS-IDX:1) > SPACE
002590 MOVE LOW-VALUE TO DATA-FILE-SPEC (WS-IDX:1)
002600 END-PERFORM.
002610* : Now point to first low-value
002620 ADD 1 TO WS-IDX
002630 STRING MY-DATA-FILE-NAME DELIMITED SPACE
002640 '[X:B4:D2:I4]' LOW-VALUE DELIMITED SIZE
002650 INTO DATA-FILE-SPEC WITH POINTER WS-IDX.
002660*
002670 0003-GET-HIGHEST-LOWEST.
002680 MOVE ZERO TO KEY-RANGE.
002690* : First get the lowest actual key
002700 MOVE LOW-VALUES TO FD-REC
002710 START DATA-FILE KEY IS GREATER THAN FD-KEY
002720*
002730 READ DATA-FILE
002740 NEXT RECORD
002750 IF FILE-STAT = '00'
002760 MOVE FD-KEY TO CONVERT-KEY-X

Copyright © Norcom 07/17/09 Page 19

NORCOM GUI ScreenIO

002770 MOVE CONVERT-KEY TO LOWEST-KEY
002780* : now get the highest key
002790 MOVE HIGH-VALUES TO FD-REC
002800 START DATA-FILE KEY IS GREATER THAN FD-KEY
002810* : We know the above will yield eof
002820 READ DATA-FILE PRIOR RECORD
002830 IF FILE-STAT = '00'
002840 MOVE FD-KEY TO CONVERT-KEY-X
002850 MOVE CONVERT-KEY TO HIGHEST-KEY
002860 SUBTRACT LOWEST-KEY FROM HIGHEST-KEY
002870 GIVING KEY-RANGE.
002880*
002890 0004-CALCULATE-PERCENT.
002900* : This calcs the % value of the key
002910* : for the record just read in
002920 MOVE ZERO TO FILE-PERCENT.
002930 IF KEY-RANGE > ZERO
002940 MOVE FD-KEY TO CONVERT-KEY-X
002950 MOVE CONVERT-KEY TO WRK-TARGET-KEY
002960 SUBTRACT LOWEST-KEY FROM WRK-TARGET-KEY
002970 DIVIDE WRK-TARGET-KEY BY KEY-RANGE GIVING WRK-TARGET-KEY
002980 MULTIPLY 1HUNDRED BY WRK-TARGET-KEY GIVING FILE-PERCENT.
002990*

Download Samples

We provide our Alpha to Numeric calculator both in source code (you will require GUI
ScreenIO to compile this) and also in binary mode which you can simply unzip into a
directory and click on the A2N.EXE file to play with the numbers.

We also provide a sample File-IO subroutine (above) which you may use as a pattern
for ISAM files from which you want to load Listviews in GUI ScreenIO, or anywhere
else you need file Percentages. The subroutine was designed to require the minimum of
customization so that it can be cloned easily.

Both are available here:
http://www.screenio.com/gui_screenio/gs_htmlhelp_subweb/download/downloads.htm

Copyright © Norcom 07/17/09 Page 20

http://www.screenio.com/gui_screenio/gs_htmlhelp_subweb/download/downloads.htm

	File Percentages with ISAM
	Basic Concept
	Method of Operation
	Obtaining Numbers from Letters.
	Putting it in Practice
	Calculation Caveats.
	Calculation Data Elements
	Calculation Code
	Code for OPEN, ADD, DELETE:
	Code for READ (any variety):
	Code for START-AT-PERCENT: (Yes, a new extension for COBOL).

	Keys Size and Distribution
	The File-IO Subroutine.
	Linking File-IO Subroutines

	 An Example File-IO Subroutine.
	The File-Request copybook.
	FILE-IO COBOL Example.

	Download Samples

